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Pythagoras (c.570 - c.495 BC) was interested in
the relationships between harmonious tones.
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J. S. Bach (1685-1750) was interested in the
mathematical problem of tuning keyboards.
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BEGINNING MATH CONCEPTS

sets, equivalence relations
functions, graphs
integers, rational numbers, real numbers
modular arithmetic
trigonometry

BEGINNING MUSIC CONCEPTS

tempo, rhythm
scales, key signatures
melody, form
pitch, intervals, tuning
tone, timbre
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Temporal notation

Music’s temporal notation is based on powers of two. We divide
time intervals in half.

18 CHAPTER 2. HORIZONTAL STRUCTURE

named according to that proportion. Thus, if the whole note has a certain
duration in beats, then the half note has half that duration, the quarter
note has one fourth that duration, etc. In the situation where a whole note
gets four beats, then a half note gets two beats and the sixty-fourth note
represents one sixteenth of a beat.

We will use the (non-standard) term durational note to mean a note
distinguished by its duration, such as half note or quarter note, independent
of its associated pitch. Observe that these designations for notes tacitly
employ the concept of equivalence class. Here we are declaring two notes
to be equivalent if they have the same duration, so that “durational note”
refers to the equivalence class of all notes having a given duration (e.g.,
“half note” designated to the equivalence class of all half notes, regardless of
their pitch). This is to be distinguished from octave equivalence, discussed
in Chapter 1, whose equivalence classes are called “note classes”.

The pitch of a note is dictated by the vertical position of its notehead
on the staff. The duration of the note is dictated by several details which
we will discuss individually. They are:

1. whether the interior of the notehead is filled

2. the presence or absence of a note stem, and, if present, the number of
flags on the stem or the number of beams attached to the stem

3. the number of dots following the note, if any

4. the tuplet designation of the note, if any

Noteheads, Stems, Flags, and Beams. The whole note and half note
are written with an unfilled notehead. For n ≥ 2 the 1

2n -th note is written
with a filled notehead. All 1

2n -th notes except the whole note (i.e., the case
n = 0) possess a note stem, which either extends upward from the right side
of the notehead or downward from the left side of the notehead. For n ≥ 3,
the 1

2n -th note’s stem is given n − 2 flags. Thus an eighth note (n = 3) has
one flag, a sixteenth note (n = 4) has two flags, etc.

whole note

¯
half note

˘
quarter note

ˇ
eighth note

-ˇ

sixteenth note

.ˇ
thirty second note
/ˇ

sixty fourth note
0ˇ

These are names for equivalence classes of notes.
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Dots

Music notation’s method of extending the duration of a note is
by adding dots. If the note has duration d, then

· has duration 3
2d = (1 + 1

2)d
·· has duration 7

4d = (1 + 1
2 + 1

4)d
··· has duration 15

8 d = (1 + 1
2 + 1

4 + 1
8)d

This hearkens to the geometric series in mathematics:

1 + 1
2 + 1

4 + 1
8 + 1

16 + · · · = 2
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Meter

Meter is given by a pair m
n where m represents the number of

beats in a measure of time, n = 2r dictates the temporal note
which receives one beat.

& 23 ! ! ! ! ! ! ! !

&9 ! ! ! ! ! ! ! ! !

&18 ! ! ! ! ! ! ! ! !

&27 ! ! ! ! !

[Title]
[Composer]

Score

& 42 ! ! ! ! ! ! ! !

&9 ! ! ! ! ! ! ! ! !

&18 ! ! ! ! ! ! ! ! !

&27 ! ! ! ! !

[Title]
[Composer]

Score

& 86 ! ! ! ! ! ! ! !

&9 ! ! ! ! ! ! ! ! !

&18 ! ! ! ! ! ! ! ! !

&27 ! ! ! ! !

[Title]
[Composer]

Score

When counting time the human brain is most comfortable with
small primes, reflected in the fact that most time signatures
involve 2 and 3.

Audio Example 1 Audio Example 2

Counting in fives and sevens is less common.

Audio Example 3 Audio Example 3
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Melodic transformation

Many songs feature melodic transpositions, analogous to
geometric transformations in mathematics. Here are two types:

(1) diatonic

26 CHAPTER 2. HORIZONTAL STRUCTURE

This type of transposition exemplified above is called chromatic transposi-
tion.

A variant form of transposition, called diatonic transposition, occurs
when a diatonic melody is moved up or down by the same number of dia-
tonic scale tones, producing a melody having the same general shape, but
with chromatic intervals not perfectly preserved due to the differing inter-
vals between adjacent diatonic notes. This occurs on the German Carol O
Tannenbaum (O Christmas Tree). Note that the first bracketed sequence be-
low is shifted downward by one diatonic scale tone in the second bracketed
sequence.G 23

4

Ǒ Christ-

` (ˇ
mas

)ˇ
tree,

` ˇ
O

(ˇ
Christ-

` (ˇ
mas

)ˇ
tree,

` ˇ
Your

(ˇ
col-

(ˇ
or

(ˇ
is

ˇ
un-

ˇ
chang-

ˇ
ing

ˇ
G 2 ? ︸ ︷︷ ︸

When

-ˇ
from

-ˇ
all

(ˇ
trees

` ˇ
the

-ˇ
col-

(ˇ
ors

(ˇ
go,

` ˇ
︸ ︷︷ ︸

You

-ˇ
still

-ˇ
are

(ˇ
green

` ˇ
a-

-ˇ
midst

(ˇ
the

(ˇ
snow.

ˇ
Retrogression. Yet another form of transformation in music is retrogres-
sion, which is analogous to the mathematical notion of horizontal reflection.
Such a reflection is exemplified when we replace the graph of y = f(x)
with that of y = −f(x), reflecting the graph around the y-axis. In music,
“retrogression” means “inverting the order of notes”, so that the resulting
sequence forms a reflection of the initial one. In this excerpt from Raindrops
Keep Falling On My Head, note the symmetry of the melody around the
point designated by ∧ :

G44
Rain-

ˇ
drops

` ˇ
keep

ÌÏÏ̌
fall-

` ˇ
∧
ing

ĘĽĽ̌
on

` ˇ
my

ÆÉÉ̌
head,

ˇ
they

` (ˇ
Form. The sequence of larger sections of music into which music may be
organized is sometimes called form. The number of measures in a section is
often a power of 2. For example, ragtime compositions typically consist of
three or four sections, each section having 16 measures; sometimes one or
more of these sections is repeated once. These sections are distinguishable
by the listener by virtue of different rhythmic and melodic character. If a
composition consisted of three sections, we might denote the form by: ABC.
If the first two sections were repeated, the form would be AA BB C. Scott

(2) chromatic
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(horizontal translation) of the sequence of pitches or the rhythmic pattern.
Here is a familiar example which illustrates rhythmic translation:G 2R

Get

(ˇ
out

ˇ
the

(ˇ
way,

˘
old

ˇ
Dan

ˇ
Tuck-

(ˇ
er!

`ˇ
Get

(ˇ
out

ˇ
the

(ˇ
way,

˘
old

ˇ
Dan

ˇ
Tuck-

(ˇ
er!

` ˇ
G 2

Get

(ˇ
out

ˇ
the

(ˇ
way,

˘
old

ˇ
Dan

ˇ
Tuck-

(ˇ
er!

`ˇ
You’re

ˇ
too

ˇ
late

`ˇ
to

(ˇ
come

ˇ
to

ˇ
sup-

(ˇ
per.

` ˇ
Note that the rhythm of the first two bars is repeated twice, while the
sequence of pitches varies.

An example of melodic (as well as rhythmic) translation is found in the
spiritual When The Saints Go Marching In,2G 2R

Oh,

ˇ
when

ˇ
the

ˇ
Saints

¯ ˚ ˇ
go

ˇ
march-

ˇ
ing

ˇ
in,

¯ ¨ ˇ
Oh,

ˇ
when

ˇ
the

ˇ
Saints

˘
where the melodic sequence F-A-B!-C appears three times consecutively.

Transposition. When a repeating pattern is being represented melodically,
it is possible to also apply a vertical shift or transposition, analogous to
replacing the graph of y = f(x) by that of y = f(x) + c. Such a shift may
repeat a melodic excerpt, transposing each note upward or downward by
a fixed chromatic interval, as in the first sixteen bars of George and Ira
Gershwin’s Strike Up The Band, in which the second eight measures repeat
the melody of the first, transposed up by the interval of a fourth.

G 22R
Let

` (ˇ
the

6 )ˇ
drums

ˇ
roll

ˇ
out!

˘ ; ` ˘
Let

` (ˇ
the

6 )ˇ
trum-

ˇ
pet

2ˇ
call!

˘ = ` ˘
While

` (ˇ
the

6 )ˇ
G 22

peo-

ˇ
ple

˝^ ˇ
shout!

˘ ; ˘
Strike

(ˇ
up

ˇ
the

(ˇ
band!

¯ ˚ ` ˘
Hear

` -ˇ
the

)ˇ
cym-

ˇ
bals

ˇ
ring!

˘ ; ` ˘
Call-

` -ˇ
ing

)ˇ
G 22

one

ˇ
and

2ˇ
all!

˘ ; ` ˘
To

` -ˇ
the

)ˇ
mar-

ˇ
tial

˝^ ˇ
swing

˘ ; ˘
Strike

-ˇ
up

ˇ
the

-ˇ
band!

¯ ˚ ˘
2This example is given in [4], as are the excerpts from O Tannenbaum and Raindrops

Keep Falling On My Head, which appear a little later in this discussion.Audio Example 3 Audio Example 3
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Patterns of m on n in music

The modular integers, mod n, are the elements of the set

Zn = {[0], [1], [2], . . . , [n− 1]}

Modular arithmetic relates to music in several ways. Here is
one.

Composers sometimes create ingenious musical passages by
imposing a pattern of m notes or beats against a pattern of n
such, where gcd (m,n) = 1. This technique exploits (perhaps
unknowingly by the composer) the fact that [m] is a generator
in Zn (and vice versa).
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One way this can occur is by cycling m pitches through a
repeated rhythmic pattern of n notes. This is exemplified in the
main melodic line of the big band song In the Mood. Here
m = 3 and n = 4. The song’s “hook” lies in the repetition of
the rhythmic figure comprising four eighth notes in swing time.

CHAPTER 8. PROPERTIES OF INTEGERS 91

the big band song In the Mood. Here m = 3 and n = 4. The song’s “hook”
lies in the repetition of the rhythmic figure comprising four eighth notes in
swing time, shown below.

ˇ ˇ ˇ ˇ =

—flflfl—
3ˇ (ˇ —flflfl—3ˇ (ˇ

The melody repeats the sequence of three pitches C4, E!
4, A!

4, through the
above rhythmic pattern as follows:

G 222 1

1

ˇ 2

2

ˇ 3

3

ˇ 4

1

ˇ 1

2

ˇ 2

3

ˇ 3

1

ˇ 4

2

ˇ 1

3

ˇ 2

1

ˇ 3

2

ˇ 4

3

ˇ 6 ˘
Note that both patterns end their cycle on the twelfth eighth notes and not
before. The reason for this lies in the previous theorem. Let the top numbers
represent the elements of Z4 = {[1], [2], [3], [4] = [0]}. Identifying each of the
bottom numbers with the element of Z4 represented directly above it, we
see the effect of adding [3]s successively in Z4. The multiples of [3] (i.e.,
the elements of Z4 lying above the 3s) are, respectively, [3], [2], [1], [4] = [0],
which exhausts the set Z4. This is because, since gcd (3, 4) = 1, [3] is a
generator of Z4, so all four of the numbers 1-4 must appear above the 3 s
before any of them makes a repeat appearance above a 3. Each three-note
cycle below starts on a different number 1-4, and the two cycles culminate
together only at 3 × 4 = 12 eighth notes, and not before.

There is symmetry between the two patterns: We could let the bottom
numbers represent elements of Z3 = {[1 ], [2 ], [3 ] = [0 ]}. Then the cycles
above are just adding successive [4 ]s in Z3. Each of the four-note cycles
starts on a different number 1-3, for all the same reasons as above.

The poignant passage below, from George Gershwin’s Rhapsody in Blue,
exhibits the same phenomenon with m = 3, n = 5, starting in the third
measure.

Audio Example
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This poignant passage from George Gershwin’s Rhapsody in
Blue, exibits the same phenomenon with m = 3, n = 5, starting
in the third measure.92 CHAPTER 8. PROPERTIES OF INTEGERSęIG 4444

4444
4
4

4
4

¯¯
ffiˇˇˇˇ

con espressione
ˇˇˇˇ ˇˇ ˇˇ ˇˇˇˇ

¯¯ˇˇˇ
´´´´
ˇ ˇˇˇˇ ˇˇˇˇť́̂ˇˇˇ ˇ ¯¯¯4¯
Ãi

1

1

¯ ˇ 2

2

6ˇ
:

3

3̌

ff4
1

4ˇ ff5
2

6ˇ
ŚĚ”ŚĚ”
Ś̋”

Ś̋”

¯¯¯¯
Ś̋”¯1

3̌

ĹĹ
2

1

4ˇ
Ď

3

2

6ˇ ff
4

3̌

ff5
1

4ˇ

ęIG 4444
4444

¯¯6¯
5¯1
2

6ˇÈÈ
2

3̌

Ď

3

1

4ˇ ff4
2

6ˇ ff
5

3̌

ŚĚ”
Ś̋”

Ś̋”¯¯¯
Ś̋”¯1

1̌

2

2

6ˇ
Ď

3

3̌

ff4
1

4ˇ ff5
2

6ˇ
¯¯¯
¯1
3̌

ĹĹ
2

1

4ˇ
Ť

3

2

6ˇ ff
4

3̌

ff5
1

4ˇ
ŚĚ”
Ś̋”

Ś̋”¯¯¯
Ś̋”¯1

2

6ˇÈÈ
2

3̌

Ď

3

1

4ˇ ff4
2

6ˇ ff
5

3̌

Here the three pitches D!
4, D4, and C!

4 are cycled against the five-note rhyth-
mic pattern comprising two eighth notes followed by three quarter notes. The
3 on 5 double pattern completes itself after 3×5 = 15 notes, occupying mea-
sures 3-5. The entire pattern is then repeated in measures 6-8 with different
harmony.

Another type of m on n pattern occurs when a melodic figure of duration
m beats is repeated in a meter which has the listener counting in groups of n
beats. An example of this occurs in the vamp section of the 1971 blues-pop
song Ain’t No Sunshine.G 4

4 ?
and

ˇ ęęęę
I

ˇ
know,

ˇ` ÁÁÂÂ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ 6 ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ 6 ˇ
I

ˇ
know,

Ê̌ÊÊÊ
ą ˇ

I

ˇ
know,

ˇ
I

ˇ
G

know,

ˇ
I

ˇ
know,

ˇ 6 ˇ
I

ˇ
know,

Ê̌ÊÊÊ
ą ˇ

I

ˇ
know,

ˇ
I

ˇ
know,

ˇ
I

ˇ ÂÂÃÃ
know,

ˇ 6 ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ 6 ˇ
I

ˇ
know,

ˇ
G

I

ˇ
know,

ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ 8 ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

(ˇ
In this example a rhythmic figure comprising a sixteenth note followed by
an eighth note (or two tied sixteenth notes) is repeated in 4

4 time. Since the

Audio Example 1
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Another type of m on n pattern occurs when a melodic figure of
duration m beats is repeated in a meter which has the listener
counting in groups of n beats. An example of this occurs in the
vamp section of the 1971 blues-pop song Ain’t No Sunshine.
Here m = 3, n = 16.

92 CHAPTER 8. PROPERTIES OF INTEGERSęIG 4444
4444

4
4

4
4

¯¯
ffiˇˇˇˇ

con espressione
ˇˇˇˇ ˇˇ ˇˇ ˇˇˇˇ

¯¯ˇˇˇ
´´´´
ˇ ˇˇˇˇ ˇˇˇˇť́̂ˇˇˇ ˇ ¯¯¯4¯
Ãi

1

1

¯ ˇ 2

2

6ˇ
:

3

3̌

ff4
1

4ˇ ff5
2

6ˇ
ŚĚ”ŚĚ”
Ś̋”

Ś̋”

¯¯¯¯
Ś̋”¯1

3̌

ĹĹ
2

1

4ˇ
Ď

3

2

6ˇ ff
4

3̌

ff5
1

4ˇ

ęIG 4444
4444

¯¯6¯
5¯1
2

6ˇÈÈ
2

3̌

Ď

3

1

4ˇ ff4
2

6ˇ ff
5

3̌

ŚĚ”
Ś̋”

Ś̋”¯¯¯
Ś̋”¯1

1̌

2

2

6ˇ
Ď

3

3̌

ff4
1

4ˇ ff5
2

6ˇ
¯¯¯
¯1
3̌

ĹĹ
2

1

4ˇ
Ť

3

2

6ˇ ff
4

3̌

ff5
1

4ˇ
ŚĚ”
Ś̋”

Ś̋”¯¯¯
Ś̋”¯1

2

6ˇÈÈ
2

3̌

Ď

3

1

4ˇ ff4
2

6ˇ ff
5

3̌

Here the three pitches D!
4, D4, and C!

4 are cycled against the five-note rhyth-
mic pattern comprising two eighth notes followed by three quarter notes. The
3 on 5 double pattern completes itself after 3×5 = 15 notes, occupying mea-
sures 3-5. The entire pattern is then repeated in measures 6-8 with different
harmony.

Another type of m on n pattern occurs when a melodic figure of duration
m beats is repeated in a meter which has the listener counting in groups of n
beats. An example of this occurs in the vamp section of the 1971 blues-pop
song Ain’t No Sunshine.G 4

4 ?
and

ˇ ęęęę
I

ˇ
know,

ˇ` ÁÁÂÂ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ 6 ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ 6 ˇ
I

ˇ
know,

Ê̌ÊÊÊ
ą ˇ

I

ˇ
know,

ˇ
I

ˇ
G

know,

ˇ
I

ˇ
know,

ˇ 6 ˇ
I

ˇ
know,

Ê̌ÊÊÊ
ą ˇ

I

ˇ
know,

ˇ
I

ˇ
know,

ˇ
I

ˇ ÂÂÃÃ
know,

ˇ 6 ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ 6 ˇ
I

ˇ
know,

ˇ
G

I

ˇ
know,

ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ 8 ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

ˇ
I

ˇ
know,

(ˇ
In this example a rhythmic figure comprising a sixteenth note followed by
an eighth note (or two tied sixteenth notes) is repeated in 4

4 time. Since the

Audio Example
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Keyboard Intervals

Modular arithmetic makes another entry into music with the
chromatic scale. Keyboard intervals, measured in semitones,
can be viewed as integers modulo 12, the set of which is
denoted Z12.

C
D[

D

E[

E

F
G[

G

A[

A

B[

B
[0]

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]
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Circle of fifths

The group generators of Z12 are [1], [5], [7], [11], corresponding
to the semitone, fourth, fifth, and major seventh. The middle
two give the circle of fifths (and fourths).

C
G

D

A

E

B
G[D[

A[

E[

B[

F
[0]

[7]

[2]

[9]

[4]

[11]
[6]

[1]

[8]

[3]

[10]

[5]
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Pitch

Pitch is measured in hertz (Hz) (cycles per second). The range
of human audibility is roughly 20-20,000 Hz.

Keyboard notes can be parameterized by the integers Z.

· · ·

C D E BFB E BG A C D F G A C D

· · ·

However, the set of pitches is a continuum parameterized by the
positive real numbers R+. Many forms of music exploit this
continuum.

Audio Example 1 Audio Example 2
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The “blue note”

MuddyWaters
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Musical intervals

Musical intervals can be measured by:

semitones s (additive measure)
ratio r (multiplicative measure)

The translator between the two are the functions:

r = 2s/12 =
(

12√2
)s

s = 12 log2(r) = log 12√2(r)

which are inverse to each other.

Microtonal musical intervals are measured in cents. One cent
is 1/100 of a semitone, so 1200 log2(r) converts ratio to cents.
Example 1: one cent Example 2: 10 cents Example 3: 20 cents

Wright Mathematics and Music



Irrationality of keyboard intervals

Note that the ratio measurement of one semitone is
21/12 = 12√2, an irrational number.

In fact: The only rational keyboard intervals are the
multi-octaves.
Theorem
Let I be the interval between two keyboard notes. If I is not an
iteration of octaves (i.e. a power of 2 as a ratio), then I is an
irrational interval.

Remark
This theorem would hold for a keyboard that divided the octave
up into n equal intervals, for any positive integer n.
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Positive integers as intervals
The positive integers Z+, considered as musical intervals
measured as ratios, give an ascending sequence which appears
roughly logarithmic when place on a musical staff. (Note: Only
the powers of 2 (2,4,8,16, . . .) are true keyboard intervals.)

y = logb x

x

y

Wright Mathematics and Music



Musical tone
A musical tone at a sustained pitch is a vibration with constant
frequency.

English horn playing A 220 Audio Example

Human voice singing “ah" A 220 Audio Example
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Periodic functions and musical tone
A musical tone is given by an oscillation, or repeating pattern
of motion, which is represented by a periodic function.

P 2P

The number P is called the period of the function. If P is
measured in seconds, then the frequency, or pitch, of the tone,
given by F = 1/P , is measured in cycles per second, or hertz
(Hz).
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The sine wave

The most basic periodic function is the f(t) = sin t, which
represents the simple up-and-down motion of a weight hanging
on a spring. Its graph is the familiar sine wave:

2π

The sound it generates is a dull hum: Audio Example
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Fourier series

Theorem
Suppose f(t) is periodic of period 2π which is bounded and has a
bounded continuous derivative at all but finitely many points in
[0, 2π). Then there is a real number C and sequences of real
numbers A1, A2, A3 . . . and B1, B2, B3 . . . such that, for all t at
which f(t) is continuous we have f(t) given by the sum

f(t) = C +
∞∑
k=1

[Ak sin(kt) +Bk cos(kt)] .

Wright Mathematics and Music



Fourier coefficients

The coefficients appearing in

f(t) = C +
∞∑
k=1

[Ak sin(kt) +Bk cos(kt)] .

are given by these formulas:

C = 1
2π

∫ 2π

0
f(t) dt

Ak = 1
π

∫ 2π

0
sin(kt)f(t) dt

Bk = 1
π

∫ 2π

0
cos(kt)f(t) dt

(1)

These are called Fourier coefficients.
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Harmonics

Now consider a periodic function g(t) of arbitrary frequence F .
An application of the sin(α+ β) formula yields:

g(t) = C +
∞∑
k=1

dk sin(2πFkt+ βk) .

k - the index of the harmonic having frequency kF
dk - the “weight” of the kth harmonic (important!)
βk - the phase shift of the kth harmonic (not important here)

The relative weights dk determine the timbre of the tone,
allowing us to distinguish between different musical instruments
and different human vowel sounds.

Audio Example
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The square wave

s(t) =
{

1, for 0 ≤ t < π

−1, for π ≤ t < 2π

2ππ

Using the integral formulas one can calculate:

C = 0, Bk = 0 for all k, Ak =
{

0, for k even
4
kπ , for k odd

hence
s(t) = 4

π

(
sin t+ 1

3 sin 3t+ 1
5 sin 5t+ · · ·

)
It sounds like: Audio Example
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Partials sums for the square wave

2π

first summand

2π

first 3 summands (1,3,5)

2π

first 8 summands (1,3,. . .,15)

2π

first 15 summands (1,3,. . .,29)

Here are the sounds as we add one harmonic at a time:
1 1,3 1,3,5 1,3,5,7 1,3,5,7,9 1,3,5,7,9,11 1,3,5,7,9,11,13
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Harmonic (overtone) series

Remember that the positive integers Z+ represent musical
intervals measured as ratios from a fixed pitch (here F2).

This sequence of tones are the harmonics (overtones) of the
lowest note.

Except for powers of 2, these keyboard notes are inexact
approximations. Note, for example, that the keyboard
approximates 6/5 and 7/6 by the same interval – the keyboard
minor third.
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Rational intervals

The interval from the kth harmonic to the ` th harmonic is ` : k,
or `/k. This accounts for all rational intervals.

The most basic interval is the octave, whose ratio is 2 : 1,
reflecting the fact that the brain instinctively comprehends 2.
Sometimes we have trouble distinguishing notes an octave apart.

Audio Example

Music frequently uses octave equivalence, which declares
keyboard notes to be equivalent if the interval between them is
n octaves, for n ∈ Z. The note names C, E[, G], etc., are
actually equivalence classes.
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Just intonation; “perfect” fifth

The rational numbers which are the ratios between the lower
pitches in the harmonic series give us the “true”, or just,
intervals of music. For example, the ratio 3 : 2 is the just fifth,
which is accurately, but not precisely, rendered on the
keyboard, according to the computation:

1200 log2(3/2) ≈ 701.955 cents

The keyboards fifth is seven semitones, or 700 cents.
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s = r − i, and let βj = −αi+j and qj = pi+j for j = 1, . . . , s. We have

x =
pα1
1 pα2

2 · · · pαi
i

qβ1
1 qβ2

2 · · · qβs
s

with p1, . . . , pi, q1, . . . , qs being distinct primes and α1, . . . ,αi,β1, . . . ,βs pos-
itive integers. We can easily write an element of Q in this form provided we
can find the prime factorization of its numerator and denominator. The
fraction x = 1,222,452

11,180,400 seems intractable, but a little work with small primes

gives the factorizations 1,222,452 = 11·73 ·34 ·22, 11,180,400 = 113 ·7·52 ·3·24.
Thus, by cancellation, we have

x =
72 · 33

112 · 52 · 22
.

We will seek to understand rational intervals by the configuration of
prime numbers p1, . . . , pi, q1, . . . , qs which appear in their factorization, as
above. We will first focus on some just intervals which are less than an
octave, comparing them to their keyboard approximations.

We begin considering some cases where the denominator is a power of
2, i.e., rational intervals having ratio n/2β , where n is odd. In this case, the
interval is the composition of the integral interval n with −β octaves. For
example:

Just Fifth. Consider the interval given by 3
2 ∈ Q+. This is the integral

interval 3 lowered by 1 octave. We noted in Chapter 8 that the interval 3 is
≈ 1.96 cents sharp of the keyboard’s octave plus a fifth. Hence 3

2 is sharp
of a keyboard fifth by this same amount. (Or we can calculate directly:
1200 log2

3
2 ≈ 701.96. The keyboards fifth is 700 cents.) The rational interval

given by 3
2 is called the just fifth.

G
approximation of 3 (≈ 2 cents flat)

¯¯ G
approximation of 3

2 (≈ 2 cents flat)

¯¯
Just Major Third. The interval 5

4 is the integral interval 5 minus two
octaves. Recall that 5 is about 14 cents less than the keyboard’s two octaves
plus a major third. Hence 5

4 is the same amount flat of the keyboard major
third, and is called the just major third.

Audio Example 1 Audio Example 2
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Comma of Pythagoras

The just fifth was the source of frustration for Pythagoras, who
wanted to tune the scale around fifths. The overshoot of 12 just
fifths over 7 octaves is:

(3/2)12

27 = 312

219 = 531441
524228 ≈ 1.01364326

which is 1200 log2((312/219) ≈ 23.46 in cents. This is called the
comma of Pythagoras. (The tempered scale shrinks the fifths.)

C
G

D

A

E

B
G[D[

A[

E[

B[

F
C

7-octave clock with just fifths
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Major third

The ratio 5 : 4 gives the just major third, which is measured in
cents by

1200 log2(5/4) ≈ 386.314 cents

whereas the keyboard’s major third is four semitones, or 400
cents.
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G
approx. of 5 (≈ 14 cents sharp)

¯
¯

G
approx. of 5

4 (≈ 14 cents sharp)

¯¯
Greater Whole Tone (Pythagorean Whole Tone). Since 3 is approxi-
mately one octave plus a fifth, the interval 9

8 is twice that, lowered by three
octaves: 9

8 = (3
2 )2 · 1

2 . This gives something close to the keyboard’s step.
The calculation 1200 log2

9
8 ≈ 203.91 shows that this just interval is about

4 cents sharp of a step. We refrain from calling this interval the “just step”
or “just whole tone” because we will soon encounter another just interval
that is well approximated by the keyboard’s one step. Instead, we will refer
to this interval as the greater whole tone. It is also called the Pythagorean
whole tone, for a reason that will be given in Chapter 12.

Now we will investigate some intervals having ratio n/3β, where n is not
divisible by 3.

Just Fourth. The most basic of these is the interval given by the ratio 4
3 .

Note that this interval, call it I, is complimentary to the just fifth, since
4
3 · 3

2 = 2. This says I is given additively as one octave minus a just fifth,
which means it is about 2 cents flat of a keyboard fourth. We call I the just
fourth.

G
approximation of 4

3 (≈ 2 cents sharp)

¯¯
Lesser Whole Tone. The ratio 10

9 gives another interval approximated by
the keyboard step. We have 1200 log2

10
9 ≈ 182.40, showing this interval to

be about 18 cents flat of the keyboard’s step. This interval will be called the
lesser whole tone. Observe that the keyboard’s step lies between the lesser
and greater whole tones, closer to the latter, as indicated on the scale of
cents below.

The keyboard’s third is audibly sharp.

Audio Example 1 Audio Example 2
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Seventh

The just rendition of the (dominant) seventh chord has ratio
4 : 5 : 6 : 7.

& œœœœb Œ Ó ! ! !

&5 ! ! ! !

&9 ! ! ! !

&13 ! ! ! !

&17 ! ! ! !

&21 ! ! ! !

&25 ! ! ! !

&29 ! ! !

[Title]
[Composer]

Score

The just, or septimal, seventh is audibly different from the
keyboard seventh.

Audio Example 1 Audio Example 2
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The striking six-note final chord can be tuned justly as
2 : 3 : 5 : 7 : 9 : 11, whereupon all these notes occur as harmonics
of E[2. Though the 7 and 11 are poorly approximated by equal
temperament, the chord’s primal appeal likely comes from its
similarity to the just rendition. Here is a striking example:
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which is called the just minor seventh (as opposed to the septimal minor
seventh).

The harmonic (overtone) series also explains more complicated har-
monies such as those found in jazz. For example, the type of ninth chord
shown below has the just tuning 4 : 5 : 6 : 7 : 9.

G ¯¯2̄̄̄
Another example occurs in George Gershwin’s Rhapsody in Blue as the final
chord of this famous passage1:ćIG ˇffi ˇMolto stentando

ˇˇffi ˇ ˇffi ˇ
ˇˇffiˇ
ˇffi ˇ
ˇˇffiˇ

ÖÖ̌ffi ˇˇ
ˇffiˇ
`
6
ˇˇ
`6
6 ˇˇˇ ŐŐ̌ffi ˇ
ĆĆ̌̌ffiˇ

3

ˇffi ˇ
3
ˇˇffiˇ
ˇffi ˇ
ˇˇffiˇ
ŔŔŞ
ˇffi ˇ

ŔŔ
Č ˇˇ
ffiˇ
ˇ ˇsimile

ˇˇˇ ˇ ˇ
ˇˇˇ
ˇ ˇ
ˇˇ ˇ

ÖÖ̌̌
ˇˇˇ
`
6
ˇ ˇ
`6
6 ˇˇˇ ŐŐ̌̌
ĆĆ̌̌̌

3

ˇ ˇ
3ˇˇˇ
ˇ ˇ
ˇˇˇ
ŔŔ̌̌

ŔŔ̌̌̌
ˇ ˇ
ˇˇˇ ˇ ˇ
ˇˇˇ
ˇ ˇ
ˇˇˇ

ÖÖ̌̌
ˇˇˇ ˇˇ
ˇˇˇ
ˇ ˇ
ˇˇˇ
ˇ ˇ
ˇˇˇ

ŁŁ̌̌

ŁŁ̌̌̌

ćIG
3

ˇ ˇ
3ˇˇ ˇ ˇ ˇ
ˇˇ ˇ
ŢŢ̌̌
ŢŢ̌̌̌

3

ˇˇ
3ˇˇˇ ˇ ˇ
ˇˇˇĽĽ̌̌
ĽĽ̌̌̌

3

ˇ ˇ
3ˇˇˇ ˇ ˇ
ˇˇˇ
ĽĽ̌̌

ĽĽ̌̌̌

3

ˇ ˇ
3ˇˇ ˇ ˇ ˇ
ˇˇ ˇ
íí̌̌
ˇˇˇ

3

ˇ ˇ
3ˇˇˇ
ˇ ˇ
ˇˇˇ
ĽĽ̌̌

ĽĽ̌̌̌

3

ˇ ˇ
3ˇˇˇ ˇ ˇ
ˇˇˇ
ĽĽ̌̌

ĽĽ̌̌̌

3

ˇ ˇ
3ˇˇˇ
ˇ ˇ
ˇˇˇ ˇ ˇ

íí
ˇˇˇ

3

ˇ ˇ
3ˇˇˇ ˇ ˇ
ˇˇˇ
ĽĽ̌̌ PO O
ĽĽ̌̌̌̌ PO O

2̌2̨̌ ffiPŘ2̆2 ˘
ffiP2˘˘˘ ˘
Pˆ ˘
8 ˘
P
88
ˆˆ ˘˘˘ ˘

The striking six-note chord at the end can be tuned justly as 2 : 3 : 5 : 7 :
9 : 11, whereupon all these notes occur as harmonics of E!

2. Though the 7
and 11 are poorly approximated by equal temperament, the chord’s primal
appeal likely comes from its similarity to this just rendition.

The functionality of augmented and diminished seventh chords often
plays on their property of having equal intervals, hence no discernable root.

1This excerpt also contains an m on n pattern as discussed in Chapter 8. The melodic
(top) line repeats a sequence of eight notes: E5, F5, G5, G4, A4, B4, C5, D5. Beginning
with the seventh measure, the notes are played in triplets, creating a 3 on 8 pattern. The
double pattern is complete after 3×8 = 24 notes, which occupy measures 7-10, culminating
in the caesura and the final jazz chord.

Audio Example

Wright Mathematics and Music



Real-time tuning

Singers and instumentalists whose instruments can bend pitch
(e.g., unfreted stringed instruments) are free to use portamento
and to tune by ear in real time. They generally gravitate
toward just intonation. Here is a striking example:

V

?

b

b

c

c

Œœ œ
Oh, de

ŒŒ

1 œ œ jœ œ jœœ œ Jœ œ Jœ
blind man stood on de

œ œ jœ œ jœœ œ Jœ œ Jœ

2 œn œb œ Œœ œb œ œ œ œ
road and cried. Oh, de

œ œ œ Œœ œ œ Œ

3 œ œ jœ œ jœœ œ Jœ œ Jœ
blind man stood on de

œ œ jœ œ jœœ œ Jœ œ Jœ

4 œ œn œb Œœ œ œ œ œ
road and cried, cry - ing,

œn œ œ Œœ œ œ Œ

V

?

b

b

5 ˙ ˙˙ ˙
“Oh,

˙ ˙˙ ˙

6 ˙ ˙˙ ˙
my Lord,

˙ ˙#˙ ˙

7 œn œ Óœ œ œ Œ œ œ
save me.” Oh, de

œN œ œ Óœ œ Ó

8 œ œ jœ œ jœœ œ Jœ œ Jœ
blind man stood on de

œ œ jœ œ jœœ œ Jœ œ Jœ

10 œn œb ˙œ œb œ ˙
road and cried.

œ œ ˙œ œb œ ˙

De Blind Man Stood On De Road And Cried

Audio Example
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String quartet: The Dover String Quartet

Dover String Quartet

Quartet in B flat major, Op. 76, No. 4 “Sunrise” (Haydn)
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Barbershop harmony
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Barbershop quartet: The Gas House Gang

Gas House Gang

Bright Was the Night
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