Probability of Consensus in Spatial Opinion Models with Confidence Threshold

Mela Hardin & Nicolas Lanchier

Arizona State University

January 15, 2020
OUTLINE

Basic Voter Model

Graph Theory – tools

General Opinion Model with Confidence Threshold

Modified Opinion Dynamics with Confidence Threshold

Imitation & Attraction Models
Basic Voter Model

Markov chain $\eta_t : \mathbb{Z} \to \{0, 1\}$

All opinions are equally likely
Each individual mimics a randomly chosen neighbor at rate one
Basic Voter Model

Markov chain $\eta_t : \mathbb{Z} \rightarrow \{0, 1\}$

All opinions are equally likely
Each individual mimics a randomly chosen neighbor at rate one
The (geodesic) distance from a to b, $d(a, b) = 4$
Graph Theory – tools

\[G = (V, E) \]

The (geodesic) distance from \(a \) to \(b \), \(d(a, b) = 4 \)

eccentricity \(\epsilon \) of a vertex \(v \)
Graph Theory – tools

\[G = (V, E) \]

The (geodesic) distance from \(a \) to \(b \), \(d(a, b) = 4 \)
eccentricity \(\epsilon \) of a vertex \(v \)
radius \(r = 2 \), diameter \(d = 4 \)
Graph Theory – example

radius $r = 1$, diameter $d = 2$
Graph Theory – example

radius $r = 1$, diameter $d = 2$
General Opinion Model with Confidence Threshold τ

$G = \mathbb{Z} = (\mathcal{V}, \mathcal{E})$ is a spatial graph

Markov chain $\xi_t : \mathbb{Z} \rightarrow \mathcal{V}$,
where \mathcal{V} is the vertex set of the opinion graph $G = (\mathcal{V}, \mathcal{E})$.
General Opinion Model with Confidence Threshold τ

$\mathcal{G} = \mathbb{Z} = (\mathcal{V}, \mathcal{E})$ is a spatial graph

Markov chain $\xi_t : \mathbb{Z} \rightarrow \mathcal{V}$,
where \mathcal{V} is the vertex set of the opinion graph $G = (\mathcal{V}, E)$.

Individuals interact if and only if their opinion distance $d(a, b) \leq \tau$
General Opinion Model – example

Let $\tau = 2$

Interaction of G and B in G

![Diagram](image-url)
General Opinion Model – example

Let $\tau = 2$

Interaction of G and B in G

Below is G, the opinion graph

$$3 = d(\xi(G), \xi(B)) > \tau \implies \text{no interaction}$$
General Opinion Model – example

\(\tau = 2 \)

Interaction of E and A
General Opinion Model – example

\[\tau = 2 \]

Interaction of E and A

\[2 = d(\xi(E), \xi(A)) = \tau \implies \text{interaction} \]
Imitation Model

Each individual imitates a randomly chosen neighbor at rate one. Individuals interact if and only if their opinion distance is at most τ ($= 2$).
Imitation Model

Markov chain $\xi_t : \mathcal{V} \rightarrow \mathcal{V}$

Each individual imitates a randomly chosen neighbor at rate one

Individuals interact if and only if their opinion distance is at most $\tau (= 2)$
Imitation Model

Markov chain $\xi_t : \mathcal{V} \rightarrow \mathcal{V}$

Each individual imitates a randomly chosen neighbor at rate one

Individuals interact if and only if their opinion distance is at most $\tau (= 2)$
Imitation Model

We define the process

$$X_t = \sum_{x \in \mathcal{V}} 1\{\epsilon(\xi_t(x)) \leq \tau\} = |\{x \in \mathcal{V} : \epsilon(\xi_t(x)) \leq \tau\}|,$$

that keeps track of the number of individuals whose opinion has eccentricity $\epsilon \leq \tau$.
Lemma. Time to fixation T is an almost surely finite stopping time

Lemma. (X_t) martingale

Optional Stopping Theorem to (X_t)

$P(\xi_T \equiv \text{consensus}) > 0$
Imitation Model

\[\tau \geq d \]

\[P(\xi_T \equiv \text{consensus}) = 1 \]
Imitation Model

\[\tau \geq d \]

\[P(\xi_T \equiv \text{consensus}) = 1 \]

\[\tau \in [r, d) \]

\[P(\xi_T \equiv \text{consensus}) \geq \frac{|\{ a \in V : \epsilon(a) \leq \tau \}|}{|V|} > 0 \]
Attraction Model

Each individual moves one opinion distance closer to a randomly chosen neighbor at rate one. Individuals interact if and only if their opinion distance is at most $\tau = 2$.
Attraction Model

Markov chain $\zeta_t : \mathcal{V} \rightarrow \mathcal{V}$

Each individual moves one opinion distance closer to a randomly chosen neighbor at rate one.

Individuals interact if and only if their opinion distance is at most $\tau (= 2)$.
Attraction Model

Markov chain $\zeta_t : \mathcal{V} \rightarrow \mathcal{V}$

Each individual moves one opinion distance closer to a randomly chosen neighbor at rate one

Individuals interact if and only if their opinion distance is at most $\tau (= 2)$
Attraction Model

The opinion graph of our model is acyclic since our result follows

Lemma (eccentricity inequalities)

\[\epsilon_{i'} + \epsilon_{j'} \leq \epsilon_i + \epsilon_j \]
Attraction Model

The opinion graph of our model is acyclic since our result follows

Lemma (eccentricity inequalities)
\[\epsilon_{i'} + \epsilon_{j'} \leq \epsilon_i + \epsilon_j \]

A non-example of a cyclic opinion graph
The opinion graph of our model is acyclic since our result follows

Lemma (eccentricity inequalities)

\[\epsilon_{i'} + \epsilon_{j'} \leq \epsilon_i + \epsilon_j \]

A non-example of a cyclic opinion graph

\[\epsilon_i = 102 = \epsilon_j; \quad \epsilon_{i'} = 103 = \epsilon_{j'} \]

This implies that \[\epsilon_{i'} + \epsilon_{j'} \not\leq \epsilon_i + \epsilon_j \]
Attraction Model

We define the process

\[(Z_t) = \sum_{x \in V} (\epsilon(\zeta_t(x)) - r) = \sum_{a \in V} (\epsilon(a) - r) |\{x \in V : \zeta_t(x) = a\}|,\]

that keeps track of the eccentricity of the individuals’ opinions.
Attraction Model – blueprint

Eccentricity inequality satisfied

Lemma. \((Z_t)\) supermartingale

Lemma. Time to fixation \(T\) is an almost surely finite stopping time

Optional Stopping Theorem to \((Z_t)\)

\[P(\zeta_T \equiv \text{consensus}) > 0 \]
Attraction Model

$\rightarrow \quad \tau \geq d$

$P(\zeta_T \equiv \text{consensus}) = 1$
Attraction Model

\[\tau \geq d \]

\[P(\zeta_T \equiv \text{consensus}) = 1 \]

\[\tau \in [r, d) \]

\[P(\zeta_T \equiv \text{consensus}) \geq 1 - \frac{1}{|V|} \sum_{a \in V} \left(\frac{\epsilon(a) - r}{\tau + 1 - r} \right) \]
Attraction Model – G: full n-ary tree
Attraction Model – G: full n-ary tree

$\tau \in [r, 2r)$:

$$P(\zeta_T \equiv \text{consensus}) \geq 1 - \left(\frac{1}{\tau + 1 - r}\right) \left(\frac{n(rn^{r+1} - (r + 1)n^{r} + 1)}{(1 - n)(1 - n^{r+1})}\right)$$
Attraction Model – G: star-like graph
Attraction Model – G: star-like graph

$\tau \in [r, 2r)$:

$$P(\zeta_T \equiv \text{consensus}) \geq 1 - \left(\frac{1}{\tau + 1 - r} \right) \left(\frac{r(r + 1)n}{2(1 + rn)} \right)$$
Thank you!