What is a cone?

Anastasia Chavez

President’s Postdoctoral Fellow
NSF Postdoctoral Fellow
UC Davis

Field of Dreams Conference 2018
Roadmap for today

1. Cones
2. Vertex/Ray Description
3. Hyperplane Description
4. An Application
<table>
<thead>
<tr>
<th>Cones</th>
<th>Vertex/Ray Description</th>
<th>Hyperplane Description</th>
<th>An Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intuitive idea of a Cone</td>
<td>"Set of vectors closed under positive combinations"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Intuitive idea of a Cone

"Set of vectors closed under positive combinations"

Example

For $V = \{(1, \frac{1}{2}), (1, 2), (2, 1), (\frac{1}{2}, \frac{3}{4})\}$
Intuitive idea of a Cone

"Set of vectors closed under positive combinations"

Example

For \(V = \{ (1, \frac{1}{2}), (1, 2), (2, 1), (\frac{1}{2}, \frac{3}{4}) \} \), the cone of \(V \) is

\[
C(V) = \left\{ a_1 \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix} + a_2 (1, 2) + a_3 (2, 1) + a_4 \begin{pmatrix} \frac{1}{2} \\ \frac{3}{4} \end{pmatrix} \mid a_i \in \mathbb{R}_{\geq 0} \right\}
\]
Vertex/Ray Description

"The space generated by a finite set of vertices/rays"

- Let $V = \{v_1, v_2, \ldots, v_i, r_{i+1}, \ldots, r_m\}$ be a set of vertices and rays in \mathbb{R}^n.
- The cone generated by V is

$$C(V) = \{\lambda_1 v_1 + \cdots + \lambda_m r_m \mid \lambda_i \in \mathbb{R}_{\geq 0}\}.$$
Vertex/Ray Description

“The space generated by a finite set of vertices/rays"

Let $V = \{v_1, v_2, \ldots, v_i, r_{i+1}, \ldots, r_m\}$ be a set of vertices and rays in \mathbb{R}^n.

The cone generated by V is

$$C(V) = \{\lambda_1 v_1 + \cdots + \lambda_m r_m \mid \lambda_i \in \mathbb{R}_{\geq 0}^n\}.$$
Hyperplane Description

“The intersection of halfspaces”

\[H_1 = \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid \frac{1}{2}x_1 - x_2 \leq 0 \right\} \]

Definition

- A hyperplane \(H \) is the set \(\{x \in \mathbb{R}^n \mid a(x) = 0\} \), for linear map \(a \) over \(\mathbb{R}^n \).
- A closed halfspace \(H \) is choosing a “side” of \(H \):

\[\{x \in \mathbb{R}^n \mid a(x) \geq 0\} \].
Hyperplane Description

"The intersection of halfspaces"

\[\mathcal{H}_1 = \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid \frac{1}{2}x_1 - x_2 \leq 0 \right\} \]

\[\mathcal{H}_2 = \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid 2x_1 - x_2 \geq 0 \right\} \]

Definition

- A hyperplane \(H \) is the set \(\{x \in \mathbb{R}^n \mid a(x) = 0\} \), for linear map \(a \) over \(\mathbb{R}^n \).
- A closed halfspace \(\mathcal{H} \) is choosing a "side" of \(H \):
 \[\{x \in \mathbb{R}^n \mid a(x) \geq 0\} \]
Hyperplane Description

“The intersection of halfspaces”

Definition

A convex cone C is a collection of closed halfspaces A, such that $C = \{x \in \mathbb{R}^n | Ax \leq 0\}$.
Theorem (Weyl–Minkowski Theorem)

A convex polyhedral cone has both a vertex/ray and hyperplane description, which are equivalent.
Where Cones Commonly Show Up

- Solvability of a general system of linear equations (Farka’s lemma)
- Integer point enumeration, Ehrhart Theory
- Discrete optimization, linear programming, feasibility problems
- Computational Complexity

Where else might they show up?
Using Cones to Understand Graphs

Definition

- A graph $G = (V, E)$ is a set of vertices and edges.
- A cycle of G is a set of edges forming a path that returns to itself only once.

Example
Using Cones to Understand Graphs

We can describe all the cycles of a graph using vectors!

- Let $c \in \{0, 1\}^n$ be the indicator vector of a cycle of graph G, where $c_i = 1$ if $e_i \in E$ and 0 if not.

Example

Cycle in $G = (1, 0, 1, 0, 1, 1)$
Using Cones to Understand Graphs

We can describe all the cycles of a graph using vectors!

- Let $c \in \{0, 1\}^n$ be the indicator vector of a cycle of graph G, where $c_i = 1$ if $e_i \in E$ and 0 if not.

Example

\[
C = \begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{pmatrix}
\]

- Every column is a cycle and rows are indexed by edges.
Using Cones to Understand Graphs

Using the set of cycles of G, we can generate the cone C_G over all cycles of G:

$$C_G = \{ \lambda_1 c_1 + \cdots + \lambda_n c_n \mid \lambda \in \mathbb{R}^n \}$$

Example

$$C_G = \left\{ \begin{array}{c}
\lambda_1 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} + \cdots + \lambda_7 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \\
\lambda_i \in \mathbb{R}^7
\end{array} \right\}$$
Using Cones to Understand Graphs

Why use cones? For a new perspective!

- **CDC conjecture:** For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles.
Using Cones to Understand Graphs

Why use cones? For a new perspective!

- **CDC conjecture:** For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles.
Using Cones to Understand Graphs

Why use cones? For a new perspective!

- **CDC conjecture**: For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles.

![Graph example](image)
Using Cones to Understand Graphs

Why use cones? For a new perspective!

- **CDC conjecture**: For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles.
Using Cones to Understand Graphs

Why use cones? For a new perspective!

- **CDC conjecture:** For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles.

 \[
 \{ (2, 2, \ldots, 2) \}
 \]

 \[\begin{array}{c}
 V_1 \\
 V_2 \\
 V_3 \\
 V_4 \\
 \end{array}
 \]

 \[\begin{array}{c}
 E_1 \\
 E_2 \\
 E_3 \\
 \end{array}
 \]

 \[\begin{array}{c}
 C_1 \\
 C_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 D_1 \\
 D_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 F_1 \\
 F_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 G_1 \\
 G_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 H_1 \\
 H_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 I_1 \\
 I_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 J_1 \\
 J_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 K_1 \\
 K_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 L_1 \\
 L_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 M_1 \\
 M_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 N_1 \\
 N_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 O_1 \\
 O_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 P_1 \\
 P_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 Q_1 \\
 Q_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 R_1 \\
 R_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 S_1 \\
 S_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 T_1 \\
 T_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 U_1 \\
 U_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 V_1 \\
 V_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 W_1 \\
 W_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 X_1 \\
 X_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 Y_1 \\
 Y_2 \\
 \end{array}
 \]

 \[\begin{array}{c}
 Z_1 \\
 Z_2 \\
 \end{array}
 \]

Via Cones: *The integral cone of cycles of G always contains $(2, 2, \ldots, 2)$.*
Using Cones to Understand Graphs

Why use cones? For a new perspective!

- **CDC conjecture**: For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles.

Via Cones: *The integral cone of cycles of G always contains $(2, 2, \ldots, 2)$.*

- **In general**: Given vector $u = (u_1, u_2, \ldots, u_n)$, is there a set of cycles so that edge i is covered u_i many times?
Using Cones to Understand Graphs

Why use cones? For a new perspective!

- **CDC conjecture:** For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles.

 ![Graph Illustration]

 Via Cones: *The integral cone of cycles of G always contains $(2, 2, \ldots, 2)$.***

- **In general:** Given vector $u = (u_1, u_2, \ldots, u_n)$, is there a set of cycles so that edge i is covered u_i many times?

 Does the integral cone of cycles of G contain u?
References

About me

Instinct

Play time!

Community Support

Allies and Cheerleaders

The Future
Thank you!

Instinct

Community Support

Allies and Cheerleaders

Play time!