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Two Ways to De�ne a Field

1 �A mathematician, like a painter or a poet, is a maker of

patterns. If his patterns are more permanent than theirs, it is

because they are made with ideas.� - Hardy, English

Mathematician, 1877 - 1947

2 Mathematics is what mathematicians happen to be studying.
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Data Science as a term is getting very popular



Data Science Outpaces Data



Science is not looking too good



Driven by Desire to Capitalize on Growth in Data Sets



Data Science as a term is getting very popular



Data Scientist as Job



What do they do?

Image taken from �R for Data Science� by Grolemund and

Wickham (free introduction to practical data science skills!)

Your undergraduate days are a perfect time to acquire such

practical skills. Could be helpful for employment and also very

handy for analysis of scienti�c data.



80% of the time spent Importing and Tidying Data

From �OpenIntro Statistics� by Diez, Barr, Cetinkaya-Rundel.

Columns: variables or features; Rows: cases or examples



Visualizing

From �OpenIntro Statistics� by Diez, Barr, Cetinkaya-Rundel.

Scatterplots still the best for visualizing relationships.



Model: Mathematical Relationships

The most famous is simple linear regression, in which we try to �nd

the line y = b0 + b1x that minimizes the sum of the squared errors

for the data we are trying to �t.



A Log Transformation was needed here



Communicate

Take a look at this famous visualization of Gapminder. What

transformation did he use on the x-axis and how does it change the

story?



So Far

Employers looking for: coding skills, math skills, hacking together

solutions skills



What is Data Science?

Using data to solve a problem.

1 Using website tra�c data to design a better website.
2 Using data on social network users to suggest contacts.
3 Using mobile phone data to track the formation of urban

slums in developing countries.
4 Using text mining and sentiment analysis to see how the public

feels about a stock in order to trade stocks.
5 Using a database of high level go play in order to make a

machine capable of beating the world's best go players.
6 Using facial recognition software to identify individuals in order

to pay for things.
7 Using ratings for previously seen movies to make suggestions

for movies a person may like.
8 Using voice data to compile a national arti�cial intelligence to

identify individuals by their voice.
9 Using brain activitity patterns to identify interesting

components of the brain that function together.



Simple Linear Regression

Given �nite data set: (xi, yi)
n
i=1.

Find b0 and b1 so that L(b0, b1) :=
∑n

i=1(yi − b1xi − b0)2 is

minimized.

Notice that L is a convex function. Therefore it has a unique

minimum.



Optimization as main tool!

Using the gradient, which is a generalization of the derivative to

multiple dimensions, we can �nd a way to descend on the surface

step by step. Take Multivariable Calculus!

Since our loss function L(b0, b1) is convex, we will eventually reach

the line of best �t. Take Convex Optimization!



Stereotypical Prediction

1 The variable you want predicted Y (say the price of Tesla

stock tomorrow).

2 The features used to predict X1, X2, . . . , Xk (say the weather,

the stock prices of a 100 di�erent related stocks on the

previous day, etc.)

3 The form of the prediction function and the parameters

de�ning them Fθ : X1 ×X2 · · · ×Xn → Y (this varies for

every kind of prediction strategy).

4 Large quantities of training data.

5 A loss function based on the data L(θ), which we are trying to

minimize in order to �nd the best Fθ.

6 An optimization algorithm for minimizing L(θ).

7 Validating the function on test data.



Everything is a Long Vector

How to teach a robot to be able to recognize images as either a cat

or a non-cat? This sounds like a biology problem. How can we

formulate this as a mathematics problem?

R3×1000×1000 is a space of 1000 by 1000 rgb images

C ⊂ R3×1000×1000 is the cat subset.

Try to learn the classi�er function fC : R3000000 → {1,−1} so
that fC(x) = 1 ⇐⇒ x ∈ C.
Let us play in a playground: playground.tensorflow.org/

Take Linear Algebra!

playground.tensorflow.org/
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Many Di�erent Kinds of Classi�ers Out There

Helpful examples at

http://scikit-learn.org/stable/index.html

Learn scikit-learn package of Python!

http://scikit-learn.org/stable/index.html


Amazing Idea: Learning the Predictors X1, . . . , Xk

Say we want to classify 32× 32 faces. That means 1024 features or

dimensions. Hard problem! Curse of dimensionality.



Amazing Idea: Learning the Predictors X1, . . . , Xk

�Dimension Reduction� or �Representation Learning� Take Linear

Algebra!

Mattias Scholz PhD Thesis 2006



Amazing Idea: Learning the Predictors X1, . . . , Xk

k Eigenfaces



Representation Learning + Prediction

Now we can classify faces:

Raw images to Eigenface basis coordinates to Prediction

R32×32 → X1 × . . . Xk → Y

We learn the feature representation F : R32×32 → X1 × . . . Xk

�rst.

Then we learn classi�er X1 × . . . Xk → Y .



Several Layers of Feature Representations

Deep Learning

From Szegedy et al. 2015.

We don't really understand why it works, it is very hard to

analyze non-convex heuristic optimization.



Power of Representation Learning

Vision: ImageNet classi�cation with deep convolutional neural

networks (2012), A. Krizhevsky et al.

Language: E�cient estimation of word representations in

vector space (2013), T. Mikolov et al

Decision Making: Mastering the game of Go with deep neural

networks and tree search (2016), D. Silver et al.

The Representation can be reused for di�erent tasks: CNN

features o�-the-Shelf: An astounding baseline for recognition

(2014), A. Razavian et al.

Unsupervised: Unsupervised representation learning with deep

convolutional generative adversarial networks (2015), A.

Radford et al.

Art of Optimization: Training very deep networks (2015), R.

Srivastava et al.



Obligatory Slide on �Big Data"

How many images do you think we have?

7 billion people, 3 billion people with smartphones, 1 picture a

day = approximately 1 trillion pictures a year

Some claim that more data was generated in the last 2 years

than the rest of the history of mankind.

In comparison: there are around 3 billion seconds in a 100 year

lifetime.

Such deep representations can only be learned with such large

data sets and massive computers (industry is outpacing

academia).

If error = bias + variance, then we want a large and �exible

class of functions so that bias is small since large enough data

can control variance.
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Big Data and Mathematics

Major technological advance of the last half century is

information technology.

The result is �Big Data.�

Today, big data provides an opportunity to create AI;

understand life and the mind; lay new foundations for

computational sciences.

For mathematicians, it is a chance to make discoveries on the

order of the formulation of probability theory or calculus.
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Have fun!


