What is Data Science?

Peter Diao, SAMSI

Field of Dreams 2017

November 4, 2017

Two Ways to Define a Field

"A mathematician, like a painter or a poet, is a maker of patterns. If his patterns are more permanent than theirs, it is because they are made with ideas." - Hardy, English Mathematician, 1877 - 1947

Two Ways to Define a Field

- "A mathematician, like a painter or a poet, is a maker of patterns. If his patterns are more permanent than theirs, it is because they are made with ideas." - Hardy, English Mathematician, 1877 - 1947
- Ø Mathematics is what mathematicians happen to be studying.

Data Science as a term is getting very popular

Driven by Desire to Capitalize on Growth in Data Sets

Data Science as a term is getting very popular

Data Scientist as Job

Data Scientist: The Sexiest Job of the 21st Century

by Thomas H. Davenport and D.J. Patil

FROM THE OCTOBER 2012 ISSUE

DATA

50 Best Jobs in America

This report ranks jobs according to each job's Glassdoor Job Score, determined by combining three factors: number of job openings, salary, and overall job satisfaction rating.

Employers: Want to recruit better in 2017? Find out how.

11k 🕜 💟 🧰 🖂

1 Data Scientist

4.8/5 4.4/5 Job Score \$110.000 4.184 Median Base Salary Job Openings

Job Satisfaction

View Jobs

What do they do?

- Image taken from "R for Data Science" by Grolemund and Wickham (free introduction to practical data science skills!)
- Your undergraduate days are a perfect time to acquire such practical skills. Could be helpful for employment and also very handy for analysis of scientific data.

80% of the time spent Importing and Tidying Data

	Α	В	С	D	E	F	G	H	1	J
1	name	state	pop2000	pop2010	fed_spend	poverty	homeown	multiunit	income	med_income
2	Autauga C	Alabama	43671	54571	6.068095	10.6	77.5	7.2	24568	53255
3	Baldwin Co	Alabama	140415	182265	6.139862	12.2	76.7	22.6	26469	50147
4	Barbour Co	Alabama	29038	27457	8.752158	25	68	11.1	15875	33219
5	Bibb Count	Alabama	20826	22915	7.122016	12.6	82.9	6.6	19918	41770
6	Blount Cou	Alabama	51024	57322	5.13091	13.4	82	3.7	21070	45549
7	Bullock Co	Alabama	11714	10914	9.973062	25.3	76.9	9.9	20289	31602
8	Butler Cou	Alabama	21399	20947	9.311835	25	69	13.7	16916	30659
9	Calhoun C	Alabama	112249	118572	15.43922	19.5	70.7	14.3	20574	38407
10	Chambers	Alabama	36583	34215	8.613707	20.3	71.4	8.7	16626	31467
11	Cherokee	Alabama	23988	25989	7.104621	17.6	77.5	4.3	21322	40690
12	Chilton Co	Alabama	39593	43643	6.324061	18.4	75.1	4.4	20517	39486
13	Choctaw C	Alabama	15922	13859	10.64038	18.7	85.6	3.9	17214	31076
14	Clarke Cou	Alabama	27867	25833	9.781442	29.2	80	6.3	17372	27439
15	Clay Count	Alabama	14254	13932	8.982702	18.8	72.8	11.2	18332	35595
16	Cleburne C	Alabama	14123	14972	6.840035	17.1	74.9	5.3	17490	36077
17	Coffee Co	Alabama	43615	49948	20.33068	17.2	69.7	13.6	22797	42253
18	Colbert Co	Alabama	54984	54428	9.687698	15.7	73.5	12.3	21079	39610
19	Conecuh C	Alabama	14089	13228	11.08074	30.6	81.6	6	15755	26944
20	Coosa Cou	Alabama	12202	11539	7.839761	16	83.7	1.9	19209	35560
21	Covington	Alabama	37631	37765	9.461856	19	74	6.1	19822	33852

- From "OpenIntro Statistics" by Diez, Barr, Cetinkaya-Rundel.
- Columns: variables or features; Rows: cases or examples

- From "OpenIntro Statistics" by Diez, Barr, Cetinkaya-Rundel.
- Scatterplots still the best for visualizing relationships.

Model: Mathematical Relationships

The most famous is simple linear regression, in which we try to find the line $y = b_0 + b_1 x$ that minimizes the sum of the squared errors for the data we are trying to fit.

A Log Transformation was needed here

Take a look at this famous visualization of Gapminder. What transformation did he use on the x-axis and how does it change the story?

DATA

Data Scientist: The Sexiest Job of the 21st Century

by Thomas H. Davenport and D.J. Patil

FROM THE OCTOBER 2012 ISSUE

🗊 SUMMARY 🖼 SAVE 🖆 SHARE 💭 COMMENT 🖬 TEXT SIZE 🔓 PRINT \$8.95 BUY COPIES

Employers looking for: coding skills, math skills, hacking together solutions skills

What is Data Science?

Using data to solve a problem.

- **1** Using website traffic data to design a better website.
- Ising data on social network users to suggest contacts.
- Using mobile phone data to track the formation of urban slums in developing countries.
- Using text mining and sentiment analysis to see how the public feels about a stock in order to trade stocks.
- Using a database of high level go play in order to make a machine capable of beating the world's best go players.
- Using facial recognition software to identify individuals in order to pay for things.
- Using ratings for previously seen movies to make suggestions for movies a person may like.
- Osing voice data to compile a national artificial intelligence to identify individuals by their voice.
- Using brain activitity patterns to identify interesting components of the brain that function together.

Simple Linear Regression

- Given finite data set: $(x_i, y_i)_{i=1}^n$.
- Find b_0 and b_1 so that $L(b_0, b_1) := \sum_{i=1}^n (y_i b_1 x_i b_0)^2$ is minimized.
- Notice that L is a convex function. Therefore it has a unique minimum.

Optimization as main tool!

Using the gradient, which is a generalization of the derivative to multiple dimensions, we can find a way to descend on the surface step by step. **Take Multivariable Calculus!**

Since our loss function $L(b_0, b_1)$ is convex, we will eventually reach the line of best fit. Take Convex Optimization!

Stereotypical Prediction

- The variable you want predicted Y (say the price of Tesla stock tomorrow).
- The features used to predict X₁, X₂,..., X_k (say the weather, the stock prices of a 100 different related stocks on the previous day, etc.)
- O The form of the prediction function and the parameters defining them F_θ : X₁ × X₂ ··· × X_n → Y (this varies for every kind of prediction strategy).

Large quantities of training data.

- A loss function based on the data $L(\theta)$, which we are trying to minimize in order to find the best F_{θ} .
- An optimization algorithm for minimizing $L(\theta)$.
- Validating the function on test data.

• $\mathbb{R}^{3 \times 1000 \times 1000}$ is a space of 1000 by 1000 rgb images

- $\mathbb{R}^{3 \times 1000 \times 1000}$ is a space of 1000 by 1000 rgb images
- $C \subset \mathbb{R}^{3 \times 1000 \times 1000}$ is the cat subset.

- $\mathbb{R}^{3 \times 1000 \times 1000}$ is a space of 1000 by 1000 rgb images
- $C \subset \mathbb{R}^{3 \times 1000 \times 1000}$ is the cat subset.
- Try to learn the classifier function $f_C : \mathbb{R}^{3000000} \to \{1, -1\}$ so that $f_C(x) = 1 \iff x \in C$.

- $\mathbb{R}^{3 \times 1000 \times 1000}$ is a space of 1000 by 1000 rgb images
- $C \subset \mathbb{R}^{3 \times 1000 \times 1000}$ is the cat subset.
- Try to learn the classifier function $f_C : \mathbb{R}^{3000000} \to \{1, -1\}$ so that $f_C(x) = 1 \iff x \in C$.
- Let us play in a playground: playground.tensorflow.org/

- $\mathbb{R}^{3 \times 1000 \times 1000}$ is a space of 1000 by 1000 rgb images
- $C \subset \mathbb{R}^{3 \times 1000 \times 1000}$ is the cat subset.
- Try to learn the classifier function $f_C : \mathbb{R}^{3000000} \to \{1, -1\}$ so that $f_C(x) = 1 \iff x \in C$.
- Let us play in a playground: playground.tensorflow.org/

Take Linear Algebra!

Many Different Kinds of Classifiers Out There

Helpful examples at http://scikit-learn.org/stable/index.html Learn scikit-learn package of Python!

Amazing Idea: Learning the Predictors X_1, \ldots, X_k

Say we want to classify 32×32 faces. That means 1024 features or dimensions. Hard problem! Curse of dimensionality.

Amazing Idea: Learning the Predictors X_1, \ldots, X_k

"Dimension Reduction" or "Representation Learning" **Take Linear Algebra!**

Mattias Scholz PhD Thesis 2006

Amazing Idea: Learning the Predictors X_1, \ldots, X_k

k Eigenfaces

Now we can classify faces:

• Raw images to Eigenface basis coordinates to Prediction

•
$$\mathbb{R}^{32 \times 32} \to X_1 \times \dots X_k \to Y$$

- We learn the feature representation $F : \mathbb{R}^{32 \times 32} \to X_1 \times \ldots X_k$ first.
- Then we learn classifier $X_1 \times \ldots X_k \to Y$.

Several Layers of Feature Representations

Deep Learning

- From Szegedy et al. 2015.
- We don't really understand why it works, it is very hard to analyze non-convex heuristic optimization.

Power of Representation Learning

- Vision: ImageNet classification with deep convolutional neural networks (2012), A. Krizhevsky et al.
- Language: Efficient estimation of word representations in vector space (2013), T. Mikolov et al
- Decision Making: Mastering the game of Go with deep neural networks and tree search (2016), D. Silver et al.
- The Representation can be reused for different tasks: CNN features off-the-Shelf: An astounding baseline for recognition (2014), A. Razavian et al.
- Unsupervised: Unsupervised representation learning with deep convolutional generative adversarial networks (2015), A. Radford et al.
- Art of Optimization: Training very deep networks (2015), R. Srivastava et al.

• 7 billion people, 3 billion people with smartphones, 1 picture a day = approximately 1 trillion pictures a year

- 7 billion people, 3 billion people with smartphones, 1 picture a day = approximately 1 trillion pictures a year
- Some claim that more data was generated in the last 2 years than the rest of the history of mankind.

- 7 billion people, 3 billion people with smartphones, 1 picture a day = approximately 1 trillion pictures a year
- Some claim that more data was generated in the last 2 years than the rest of the history of mankind.
- In comparison: there are around 3 billion seconds in a 100 year lifetime.

- 7 billion people, 3 billion people with smartphones, 1 picture a day = approximately 1 trillion pictures a year
- Some claim that more data was generated in the last 2 years than the rest of the history of mankind.
- In comparison: there are around 3 billion seconds in a 100 year lifetime.
- Such deep representations can only be learned with such large data sets and massive computers (industry is outpacing academia).

- 7 billion people, 3 billion people with smartphones, 1 picture a day = approximately 1 trillion pictures a year
- Some claim that more data was generated in the last 2 years than the rest of the history of mankind.
- In comparison: there are around 3 billion seconds in a 100 year lifetime.
- Such deep representations can only be learned with such large data sets and massive computers (industry is outpacing academia).
- If error = bias + variance, then we want a large and flexible class of functions so that bias is small since large enough data can control variance.

• Major technological advance of the last half century is information technology.

- Major technological advance of the last half century is information technology.
- The result is "Big Data."

- Major technological advance of the last half century is information technology.
- The result is "Big Data."
- Today, big data provides an opportunity to create AI; understand life and the mind; lay new foundations for computational sciences.

- Major technological advance of the last half century is information technology.
- The result is "Big Data."
- Today, big data provides an opportunity to create Al; understand life and the mind; lay new foundations for computational sciences.
- For mathematicians, it is a chance to make discoveries on the order of the formulation of probability theory or calculus.

Have fun!

Discovery is the privilege of the child: the child who has no fear of being once again wrong, of looking like an idiot, of not being serious, of not doing things like everyone else.

— Alexander Grothendieck —